

Advanced Epi Tools for Gallium Nitride Light Emitting Diode Devices

Work Performed Under Agreement:

DE- EE0003331

Applied Materials, Alternative Energy Products & Advanced Technology Group

2012 DOE SSL Manufacturing Workshop June 13-14, 2012

Program Outcome/Milestones

- ➤ Increase manufacturing throughput by developing and assembling a multiwafer system that can deposit high-quality GaN with a growth rate twice as fast as today's MOCVD systems
- ➤ Decrease cycle time and improve binning yield by demonstrating a multichamber MOCVD and HVPE/MOCVD system and a manufacturing process that can produce LEDs with high internal quantum efficiency and minimal PL uniformity variation within each wafer and wafer-to-wafer.
- ➤ Assure the industrial relevance of the multi-chamber MOCVD / HVPE system by developing processes that allow it to deposit high-quality LED structures on the most promising candidate substrate materials
- ➤ Increase throughput by developing a **novel automated** *in-situ* **cleaning** process
- ➤ Design, build, assemble, and test a full-scale epitaxial growth system for LED manufacturing in a multi-chamber configuration (MOCVD and MOCVD/HVPE chambers) with in situ cleaning capability.

Applied Centura NLighten MOCVD System

Multiple MOCVD Chambers

Full Automation Wafer & Carrier Handling

0 0

Full Computer Control

External Use

Applied NLighten MOCVD System:

Superior Device Performance, Yield and Production Cost

Integrated LED Structure Approach:

Progressive Processing

✓ Dedicated reactor processing enables world class run-to-run repeatability with no opening chamber, no recipe changes, no manual intervention at all

Integrated LED structure

- ✓ MQW: Sharp interface, rapid temperature ramping
- ✓ pGaN: Sharp Mg turn-on profile

Multi-chamber cluster tool

- ✓ Scalable 4-chamber modular design
- ✓ 2", 4", 6" and 8" wafer processing (12" extendibility)

CoO benefit

- ✓ Reduced chemical consumption vs. competitors
- ✓ Smaller footprint vs. competitor
- ✓ Less PM frequency vs. competitors

Small footprint

✓ High wafer out per square foot

Production worthiness with fully automated system

- ✓ In-situ chamber cleaning
- ✓ World first full automated operation and wafer handling

System Configuration

Better run-to-run reproducibility by creating sharp Mg turn-on and profile

Eliminates excessive Ga (post uGaN) that depletes Indium to create more uniform and repeatable MQW pairs

Production proven Applied Centura® mainframe robot transfers wafer carriers invacuum to and between each chambers

Central Vacuum Mainframe

Central Vacuum Mainframe

u/nGaN Chamber

Chamber 4

Buffer growth and u/nGaN template growth HVPF

Maximize productivity with optional 4th chamber

Over 18,000 Applied Cluster Tools Installed Worldwide

Applied HVPE Chamber

- Compact vertical chamber design
 - Cluster integration with MOCVD chambers
 - Minimal footprint
- Highest productivity and low operating cost
 - High GaN growth rate
 - In-situ cleaning enabled
- Scalability to large size substrates
 - Capable of 300mm wafer handling
- Wafer capacity per run:
 - 31 x 2"
 - 8 x 4"
 - 4 x 6"
 - 1 x 8"

Benefits of Applied HVPE Process for u/n-GaN

- Fast GaN deposition rates for high throughput and productivity
- Unique in-situ HVPE buffer techniques for planar sapphire and PSS
- Excellent crystalline quality GaN [XRD FWHM: (002) 90-130"; (102) 200-250"] to enable:
 - Improvement of light extraction
 - Lower defect densities for IQE, leakage current improvement
- Process flexibility for wide range of u- and n-GaN thicknesses, and high doping levels
- Production HVPE tool with high capacity: 31x2", 8x4", 4x6", 1x8"

Feature	Typical MOCVD	Applied HVPE
Growth Rate	$2-3~\mu m/hr$	10 - 100 μm/hr
Crystal Quality (on PSS)	~ 250" (102)	~ 150" (102)
Thickness per run	4-6 μm	4-30 μm
Precursor Cost	Trimethylgallium (TMG)	Ga, >5x less than TMG

High crystalline quality & extremely low defect density of thin and thick GaN

HVPE Platter Thickness Uniformity

External Use

Hands-Off 120 Consecutive MQW Runs

Longest Production Cycle Before Chamber Maintenance

- 120 back-to-back runs with no manual intervention: no recipe adjustment, no chamber opening "Hands-Off Processing"
- Rapid chamber recovery post maintenance: 8hrs green-to-green

Excellent Run-to-Run Wavelength Yield Performance

Tight wavelength distribution, matching >87% of 5nm bin to 450nm target for 5 consecutive runs

In-Situ Clean of u/n-GaN Chamber

- MOCVD and HVPE capability
- Thermally-enhanced chlorine clean to remove Ga-rich GaN deposits on chamber surfaces
- Two simultaneous processes: chlorination of GaN; sublimation of GaCl_x
- Fast etch rates for high chamber productivity
 - Optimized showerhead temperature, chlorine flux, chamber pressure

HVPE Process Established with in-situ Clean

 HVPE chamber allows to keep high temperature during cleaning cycle. As a result, the chlorine based cleaning is more effective in HVPE chamber than in MOCVD chamber with cold showerhead.

Cleaning and Deposition sequences for HVPE process

No need to open chamber after each CLN run. The chamber is ready for next DEP run.

Excellent Throughput Performance

Sequential 3 chamber process ("1 + 1 + 1")

- The cycle time per run can be reduced to 3.3 hrs.

Newly developed Parallel 2 chamber process ("1 + 2")

- One HVPE chamber to deposit u/n-GaN film
- 2 MOCVD chambers to deposit MQW and p-GaN layers simultaneously as shown
- A cycle time of 2.3 hrs. can be achieved, far exceeding the program goal of 3.5 hours by 35%.

External Use

Summary

- Introduced world-class cluster MOCVD system and processes for LED volume production
- Demonstrated production worthy HVPE chamber and processes
- Developed the world's first HVPE + MOCVD integrated system and processes
 - Highest throughput, lowest operating cost and most compact design
- Developed processes that ensures high repeatability, high yield and world-class LED performance
- Department of Energy funding was essential to enable these critical R&D efforts

Turning innovations into industries.™